FireDOC Search

Author
Bentz, D. P. | Peltz, M. A.
Title
Reducing Thermal and Autogenous Shrinkage Contributions to Early-Age Cracking.
Coporate
National Institute of Standards and Technology, Gaithersburg, MD
Journal
ACI Materials Journal, Vol. 105, No. 4, 414-420, July/August 2008
Report
Title No. 105-M48,
Keywords
cracking (fracturing) | shrinkage | concretes | construction | hydration | costs | curing agents | ASTM C150 | ASTM C305 | mortar | compressive strength | temperature rise | cement pastes | deformation | durability
Identifiers
cement oxide compositions, Bogue potential phase mass fractions and fineness; mortar mixture proportions used in study; initial paste microstructures; mortar cubes; semi-adiabatic testing
Abstract
Early-age cracking continues to be a significant problem for new concrete construction. Two of the major contributors to such cracking are the heat released by cement hydration during the first few days of curing and the autogenous shrinkage that often occurs during the same time frame. In this paper, three potential alternatives for reducing these contributions by modifying the concrete mixture proportions are investigated, namely increasing the water-cement ratio (w/c), using a coarser cement, or replacing a portion of the portland cement with a coarse limestone powder. Each alternative reduces the heat generated per unit volume by either reducing the volumetric cement content or its early-age reactivity, and reduces autogenous shrinkage by increasing the interparticle spacing between grains in the three-dimensional microstructure. These reductions are quantified for paste and mortar systems by measuring their semi-adiabatic temperature rise and autogenous deformation along with measurements of compressive strength to indicate the strength trade-off that will be experienced in reducing the risk of early-age cracking. These mixtures each have the additional advantage that they should result in a cost savings in comparison with an initial (control) mixture.