displaying 1 - 9 results in total 9
Najm, H. N.; Wyckoff, P. S.; Knio, O. M.
view article (1.0)Semi-Implicit Numerical Scheme for Reacting Flow. Part 1. Stiff Chemistry.Sandia National Labs., Albuquerque, NM; Johns Hopkins Univ., Baltimore, MDJournal of Computational Physics, Vol. 143, 381-402, 1998Mansfield, J. R.; Knio, O. M.; Meneveau, C.
view article (1.0)Dynamic LES Scheme for the Vorticity Transport Equation: Formulation and Priori Tests.Johns Hopkins Univ., Baltimore, MDJournal of Computational Physics, Vol. 145, 693-730, 1998Jayaraman, S.; Mann, A. B.; Reiss, M.; Weihs, T. P.; Knio, O. M.
view article (1.0)Numerical Study on the Effect of Heat Losses on Self-Propagating Reactions in Multilayer Foils.Johns Hopkins Univ., Baltimore, MDCombustion and Flame, Vol. 124, No. 1/2, 178-194, January 2001Reagan, M. T.; Najm, H. N.; Ghanem, R. G.; Knio, O. M.
view article (1.0)Uncertainty Quantification in Reacting-Flow Simulations Through Non-Intrusive Spectral Projection.Sandia National Laboratories, Livermore, CA; Johns Hopkins University, Baltimore, MDCombustion and Flame, Vol. 132, No. 3, 545-555, February 2003Najm, H. N.; Knio, O. M.; Paul, P. H.
view article (1.0)Role of Transport Properties in the Transient Response of Premixed Methane/Air Flames.Sandia National Laboratories, Livermore, CA; Johns Hopkins University Baltimore, MD; Eksigent Technologies LLC Livermore, CACombustion Institute, Symposium (International) on Combustion, 29th. Proceedings. Volume 29. Part 2. July 21-25, 2002, Combustion Institute, Pittsburgh, PA, Sapporo, Japan, Chen, J. H.; Colket, M. D., Editors, 1713-1720 p., 2002Reagan, M. T.; Najm, H. N.; Debusschere, B. J.; LeMaitre, O. P.; Knio, O. M.; Ghanem, R. G.
view article (1.0)Spectral Stochastic Uncertainty Quantification in Chemical Systems.Sandia National Laboratories, Albuquerque, NM; Universite d'Evry Val d'Essonne, Evry, France; Johns Hopkins Univ., Baltimore, MDCoambustion Theory and Modeling, Vol. 8, No. 3, 607-632, September 2004Salloum, M.; Knio, O. M.
view article (1.0)Simulation of Reactive Nanolaminates Using Reduced Models. Part 1. Basic Formulation.Johns Hopkins Univ., Baltimore, MDCombustion and Flame, Vol. 157, No. 2, 288-295, February 2010Salloum, M.; Knio, O. M.
view article (1.0)Simulation of Reactive Nanolaminates Using Redeuced Models. Part 2. Normal Propagation.Johns Hopkins Univ., Baltimore, MDCombustion and Flame, Vol. 157, No. 3, 436-445, March 2010Salloum, M.; Knio, O. M.
view article (1.0)Simulation of Reactive Nanolaminates Using Reduced Models: III. Ingredients for a General Multidimensional Formulation.Johns Hopkins University, Baltimore, MDCombustion and Flame, Vol. 157, No. 6, 1154-1166, June 2010