FireDOC Search

displaying 1 - 10 results in total 32

  • Cooper, L. Y.
    view article (1.0)

    Calculating Combined Buoyancy- and Pressure-Driven Flow Through a Shallow, Horizontal, Circular Vent; Application to Problem of Steady Burning in a Ceiling-Vented Enclosure.
    National Institute of Standards and Technology, Gaithersburg, MD
    National Institute of Standards and Technology (NIST) and Society of Fire Protection Engineers (SFPE). International Conference on Fire Research and Engineering (ICFRE). Proceedings. September 10-15, 1995, Orlando, FL, SFPE, Boston, MA, Lund, D. P.; Angell, E. A., Editors, 321-326 pp, 1995 AND European Symposium on Fire Safety Science, First (1st). ABSTRACTS. Proceedings. Session II. Fire Dynamics 2. ETH Institute for Structural Engineering. August 21-23, 1995, Zurich, Switzerland, II-17/99-99 pp, 1995

  • Morrison, D. S.; Corlett, R. C.
    view article (1.0)

    Fire Gas Characterization Via Potential Oxygen Consumption Calorimetry.
    Advanced Systems Technology, Arlington, VA; Washington Univ., Seattle
    Federal Aviation Administration. Fire Calorimetry. July 27-28, 1995, Gaithersburg, MD, Hirschler, M. M.; Lyons, R. E., Editors, 113-121 p., 1995

  • Quintiere, J. G.
    view article (1.0)

    Use and Interpretation of Calorimetry Date for Fie Predictions.
    Maryland Univ., College Park
    Federal Aviation Administration. Fire Calorimetry. July 27-28, 1995, Gaithersburg, MD, Hirschler, M. M.; Lyons, R. E., Editors, 122-133 p., 1995

  • Tuovinen, H.
    view article (1.0)

    Validation of Ceiling Jet Flows in a Large Corridor With Vents Using the CFD Code JASMINE.
    Swedish National Testing and Research Institute, Boras, Sweden
    Fire Technology, Vol. 32, No. 1, 25-49, January/February 1996

  • Cooper, L. Y.
    view article (1.0)

    Calculating Combined Buoyancy- and Pressure-Driven Flow Through a Shallow, Horizontal, Circular Vent: Application to a Problem of Steady Burning in a Ceiling-Vented Enclosure.
    National Institute of Standards and Technology, Gaithersburg, MD
    Fire Safety Journal, Vol. 27, 23-35, 1996

  • Magnusson, S. E.; Thelandersson, S.
    view article (1.0)

    Temperature-Time Curves of Complete Process of Fire Development. Theoretical Study of Wood Fuel Fires in Enclosed Spaces.
    Lund Univ., Sweden
    APS CI 65, 1970, 185 p.

  • Lommasson, T. E.
    view article (1.0)

    Preliminary Investigation of Firestorm Start-Criteria. Technical Note.
    Dikewood Corp., Albuquerque, NM
    Office of Civil Defense, Washington, DC, DC-TN-1050-1, June 15, 1965, 32 p.

  • Williams, D. W.; Adams, J. S.; Batten, J. J.; Whitty, G. F.; Richardson, G. T.
    view article (1.0)

    Operation Euroka: An Australian Mass Fire Experiment.
    Australian Defence Scientific Service, Maribyrnong, Australia
    Report 386, September 1970, 64 p.

  • George, C. W.; Blakely, A. D.
    view article (1.0)

    Energy Release Rates in fire Retardant Evaluation.
    Intermountain Forest and Range Experiment Station, Ogden, UT
    Fire Technology, Vol. 6, No. 3, 203-210, August 1970

  • Budnick, E. K.; Evans, D. D.; Nelson, H. E.
    view article (1.0)

    Simplified Fire Growth Calculations.
    Hughes Associates, Inc., Baltimore, MD; National Institute of Standards and Technology, Gaithersburg, MD
    NPFA FPH 1897; Section 11; Chapter 10,
    Fire Protection Handbook, 18th Edition. National Fire Protection Association. 1997, NFPA, Quincy, MA, Cote, A. E.; Linville, J. L.; Appy, M. K.; Benedetti, R. P.; Cote, R. M.; Curtis, M. H.; Grant, C. C.; Hall, J. R., Jr.; Moore, W. D.; Powell, P. A.; Solomon, R. E.; Tokle, G. O.; Vondrasek, R. J., Editors, 11/97-107 p., 1997